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Abstract An Unsteady Reynolds-Averaged Navier-Stokes (URANS) equation method has been
applied to compute the flow over two-dimensional smooth topography and compared with
conventional RANS and large-eddy simulation (LES) results. The URANS calculation with
sufficient grid resolution near solid surface and an appropriate near-wall model has been shown
to simulate much of the large-scale unsteadiness and some of the turbulent motion for flows
with and without separation. Although the results with unadjusted model constants do not show
an overwhehming improvement over a standard two-equation model, it is demonstrated that it
may be improved and, more importantly, can be generalized to a new simulation technique by
refiming the model, considering such factors as grid-dependent length scales and by making a
three-dimensional calculation.

1. Introduction

While direct numerical simulations (DNS) are giving important information on
mechanisms of turbulence at low Reynolds numbers, even LES of a sufficient
resolution still is difficult in most engineering applications and there still is
much expectation on the methods based on Reynolds averaged equations.
Reynolds-averaged Navier-Stokes (RANS) equation methods are intended to
solve for Reynolds-averaged flows and if the boundary conditions are time-
independent, the solution should be a steady flow, even if a time-marching
calculation is performed. When there is a periodic large-scale unsteadiness in
the flow, such as the case of vortex shedding off bluff bodies, the unsteady
RANS equations may be considered to represent the phase-averaged flow and
the time-dependent solution is conceivable (Rodi, 1993). Franke and Rodi (1991),
Bosch and Rodi (1998), Shimada and Meng (1998) and Lee (1997) applied
various RANS methods in unsteady forms to calculation of vortex-shedding
flow past square and rectangular cylinders. Iaccarino and Durbun (2000)
conducted a calculation of three-dimensional unsteady flow using a RANS
technique. The degree of unsteadiness obtained by different calculation
methods was found to depend on the turbulence model used and that it is the
periodic unsteadiness of large-scale vortex shedding motion and no random
turbulence was calculated. Conventional RANS calculations of separated flows
over hills by Okajima et al. (1998), Ishihara (1999) and Ishihara and Hibi (2000),
on the other hand, do not show any unsteadiness, even the periodic vortex
shedding motion. These calculations employ relatively coarse grids that do not
resolve the low-Reynolds number region near solid boundaries. In their recent
calculation of flow around a square cylinder using a non-linear k- model,
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vortex shedding. According to Shimada and Ishihara’s (1999) calculation of
flow past square and rectangular cylinders, irregular fluctuations due to
possible turbulence were seen in the lift and drag forces only when turbulence
model was not used. Some irregularities in the wall pressure are seen in the
URANS calculation of Iaccarino and Durbin (2000). Garuelle and Ducros (1999)
used a one-equation URANS model in the calculation of a boundary layer and
found that no unsteadiness. It is not quite clear if a straightforward extension
of a conventional RANS method to an unsteady turbulent flow can capture
turbulence. In two-dimensional version of LES, however, random motion is
reproduced and recent calculation by Bouris and Bergeles (1999) even indicates
that a 2-D LES reproduced turbulence better than a 3-D LES, since very fine
motion near the wall can be resolved.

Koutmos and Mavridis (1997) recognized that URANS and LES equations
are equivalent, and modeled the eddy viscosity as a sum of contributions from
the deterministic turbulence by %-¢ model and that due to filtering effects of the
numerical grid by Smagorinsky model. Spalart (1999) proposed a simulation
method that tries to exploit a RANS model in an unsteady mode and attempted
to combine a RANS model with LES. Baggett (1998) also is trying to merge a
RANS and LES models to be applied to high Reynolds number flows with
relatively coarse mesh. Furthermore, Speziale (1998) suggested that a
generalized sub-grid model that is derived from a RANS model to be used to
compute turbulent flows with wide range of grid resolution and the Reynolds
number. If, however, a URANS calculation can capture some or much of the
turbulence motion, it can become a new simulation method with a single
turbulence model. In the present study, a URANS method based on the k-
model resolving the near-wall flow is applied to calculation of boundary layer
flows over smooth topography, with and without flow separation, to examine if
in fact a URANS calculation can reproduce turbulence. Conventional LES and
steady RANS calculation using standard k- model are separately applied in
order to clarify the meaning of unsteady RANS calculation and to explore a
possible generalization to a turbulence simulation technique.

2. Basic equations

The Reynolds-averaged equations of motion for incompressible flows are
derived by either time averaging or ensemble averaging of the equations for the
instantaneous flows. The same equations are obtained by other averaging
operations like a short-time averaging or spatial filtering, and for that matter,
any linear operation that can commute with time and spatial differentiation. In
the present context we avoid the precise definition of the averages and we
consider the averaged quantities, denoted by ( ), that satisfy the unsteady
Reynolds averaged equations of motion:
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and the continuity equation:

Nu;)
D=0 @)

Here w; is the local instantaneous velocity component in x; direction, p is the
instantaneous pressure, v and p are the fluid kinematic viscosity and density,
Ry = —(uju;) + (u;)(u;) is the added stress that arises from averaging of the
nonlinear terms. Though the physical meaning of K; and its method of
modeling depend on the precise definition of the average, the conventional
1sotropic eddy viscosity representation:
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where v; is the eddy viscosity coefficient, is one method of closure. Furthermore,
if we use (k) to denote the kinetic energy of the fluctuation from the average (1;),
defined by (k) = — IRy =1 ((wu;) — (u;) (u;)), and () its rate of dissipation,
we can follow k-e type two-equation turbulence model and represent v; by:

v = Culk)?/(e) (4)

with the value of the constant C. expected to take the standard value of 0.09 at
least when or in the limit the average approaches the long time average.
Depending on the precise meaning of the averaging that we are inferring, it may
not be quite the same as those implied by the conventional %-¢ model, but there
should be no reason not to use the conventional model equations for solving
these quantities:

ok ok 0 v\ Ok
%+<Mj>a<—xfzp(k>+8_%(<y+a_;>%>_<E> (5)
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where p is the production of (k)
Py Uagzjz) ' (7)

We may also use, for now, the standard values of the model constants, Cu, C,
Cy, 01, and o, until a firm reason against it is found. We also make a modification
to equation (4) to apply the model in the low-Reynolds number region near solid
boundary and we adopt the two-layer type modification following the method of
Lakehal and Rodi (1997). Hence equation (4) is replaced by:
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v = C (k)2 (8)

in the near wall region, R, = (k) v Zyn /v < 2.6, and equation (6) is replaced by:

() = (B)*?/L 9)
where
1
lﬂ:CZy,,fM, lEZCLynH—T/(CgRy) (10)
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and « is the Karman constant. (k) is solved up the wall using equation (5)
applying the boundary condition (k) = 0. The length scales /, and /. with
damping by equation (11) provide modeling of low-Reynolds number effects. As
they stand, these equations are identical to the conventional RANS equations
but the unsteady terms are now included in the equations of motion and in the
transport equations.

The basic equations for LES method that we consider for comparison purposes,
are very similar, except that the meaning of the averaging is clear which is the
spatial filtering, and the additive stress terms are the sub-grid stresses which we
may denote by 7;. We retain the notation ( ) to represent the spatially filtered flow
quantities, then the eddy viscosity formula for the subgrid stress is:

1 Ou;) | O(u,
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where 1; now is the sub-grid stress eddy viscosity coefficient. In the present
calculation we make use of the Smagorinsky model for v; and 7
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where A is the length scale associated with the grid spacing for which we take the
geometric average of the grid spacings in three directions A =3 \/A,A A,
C,, and Cs are model constants for which we use the standard values C, = 0.94 and
Cs = 013, and fiy") is the Van-Driest type damping function depending on the
distance y,, to the nearest wall and is:

FO) =1—exp(—y"/25), »y" =yu, /v (14)

where %, 1s the friction velocity. With the damping function the equations of
motion can be integrated up to the ground and the non-slip condition can be



applied there. Since the grid used in the present calculation is not quite fine
enough in some regions at the present Reynolds number, a separate calculation is
made, for the purpose of comparison, by assuming a three-layer wall-function
velocity profile at the first calculation point from the ground.

3. Computational cases

The above URANS and LES calculation methods have been applied to the flow
over smooth two-dimensional topographies shown in Figure 1. These are the
cases for which experimental data have been collected by Nakamura et al.
(1998). The first case is an isolated hill defined by an analytic equation:

z 1

B 15
H 1+ (x/11H) 1)
where z is the elevation of the ground at horizontal position x1, and H is the
height of the hill. The second case is an ascending slope described by:

1 Gl
z 1+(x/L1H)  H >0

Z - (16)
H .
1, 5>0

For both cases the maximum slope angle is 45 degrees from the horizontal
direction. For these smooth boundaries, the separation point is not forced and is
an important element to be predicted by a simulation method. According to the
experiment described below, the flow separates downstream of the isolated hill
but no separation is seen over the ascending slope, and these two cases provide
representative cases with separation and without separation.

4. Numerical method

Numerical methods used in the present URANS and LES calculations are not
the same but not entirely different, either. The largest difference is in the
computational grids. In URANS calculation, a boundary fitted curvilinear
coordinates are used, while Cartesian coordinates are used in the LES
calculation, in which case the boundary condition is applied at the grid point
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Figure 1.
Isolated hill and
ascending slope models
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Figure 2.
Computational grids
used in URANS
calculation

closest to the boundary. The corresponding grids are shown in Figures 2 and
3. The grids used in URANS calculation are 150 x 50, covering the region
19H x 10H in the streamwise and the vertical directions. The grids used in
LES calculations are 123 x 73 x 20, covering the three-dimensional region of
19H x 10H x 4H. Both methods use the staggered mesh arrangement, the
second-order finite differencing scheme for viscous and turbulence terms and
third-order upwind differencing (UTOPIA) for the convective terms. MAC
method is used for obtaining pressure in URANS method and HSMAC is
applied in the LES computation. In both cases the momentum equations are
integrated with time by an implicit Euler method, with the non-dimensional
time step of 0.0001 starting from a uniform-flow initial condition. The present
LES calculation is done using the same program as that used by Nakayama
and Noda (2000), in which it is shown that the non-boundary fitting
coordinate introduces errors similar to the linear extrapolation of velocity
components near the boundary but does not induce any separation-like
disturbances. We have also compared the calculations obtained by using
boundary-fitted coordinates and rectangular coordinates, and verified that
the small disturbance caused by the rectangular-grid approximation does not
influence the mean velocity results of separating boundary layer over a
smooth hill (Nakayama and Vengadesan, 2001).
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5. Summary of experiments

Experiments were carried out in a blower-type low-speed, low-turbulence
(0.2 percent) wind tunnel of test section of 2.00m x 2.62m. The two-dimensional
hill and slope models whose profiles are those shown in Figure 1, and the span
of 500mm were installed in the center of the tunnel test section of width 2.62m
with endplates to improve two-dimensionality of the flow. The height H of the
model hill and the slope was 100mm. The on-coming flow of velocity U, of
approximately 8.0m/s was used so that the Reynolds number based on U,,rand
H was fixed at 5.2 x 10%. The mean and fluctuating velocity components were
measured using a single-sensor hot-wire probe, with the sensor axis placed
parallel to the boundary and normal to the free-stream direction. The
instantaneous output could be related to the instantaneous velocity component
normal to the sensor axis. The output of the hot-wire anemometer was digitized
real-time and all the processing was done by a digital computer. The time
average of the output could be related to the magnitude of the mean velocity,
and the mean square as twice the turbulence kinetic energy K if the lateral
turbulence intensity could be estimated by the average of the other two
intensities. The results, however, need to be interpreted with care, particularly
in the region with instantaneous flow reversal, since the sensitivity to the
velocity component parallel to the sensor axis is ignored. The measured results
are shown together with the computational results in the following sections.
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Figure 3.
Computational grids
(123 x 73 x 20) used in
LES calculations
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6. Properties of time evolution of the calculated results

Figures 4 and 5 show the contours of the instantaneous lateral vorticity
distributions at a non-dimensional time interval of AtU,,s/H = 1.0 calculated
by the URANS and LES methods, for the flows over the isolated hill and over
the ascending slope, respectively. It is seen that the URANS calculation results
contain significant unsteadiness, particularly in the flow past a hill. They are
not completely periodic, as would be expected of a phase-averaged quantity.
In both isolated hill and ascending slope flows, the unsteadiness is initiated in
the thin boundary layer near the top of the hill and grows into large-scale
vortex structure downstream. These are definitely not the vortex-shedding
type unsteadiness but are not quite the turbulent eddies, either. The LES
results indicate, on the other hand, that irregular fluctuations appear somewhat
downstream in the separated region, and they are more random with
small-scale fluctuations superimposed on more vague large vortex structure.
Other than these differences, the overall properties of both calculations share
common features of filtered flow fields. There is no reason why the URANS
results cannot be interpreted to represent a short-time average flow or laterally
averaged flow. The results of the standard k- method using a coarser grid and
the wall-function boundary condition converged to a perfectly steady state
after advancing for about ten non-dimensional time from an assumed initial
condition of a uniform flow and showed no unsteadiness whatsoever.

7. Turbulent kinetic energy and eddy viscosity

Whether the unsteady fluctuations that have been seen in the URANS
calculations are turbulence, or other type of motion including numerical
instability, may be examined by looking at the kinetic energy of the computed
unsteady fluctuations. Figures 6 and 7 show the calculated total kinetic energy:

K = (Tl — T ) + 8 (17)

compared with the experiments, the results of LES, and calculation using the
standard k-¢ model for the hill and ascending-slope cases, respectively.
Measurements were made by using the single-sensor hot-wire probe as
described in the previous section, and the data shown here represent
1/2(62 + u} — w® — uz%, which should correspond to the total turbulent kinetic
energy K when the lateral fluctuation is not significant. In the standard k-
calculation, there is no unsteady motion and K = (k). The average of the
modeled part of the turbulent kinetic energy (k) calculated by in the URANS is
shown separately in Figure 8. It is seen that (k) is one order of magnitude
smaller than the total turbulent kinetic energy K. K calculated by the present
URANS agrees fairly well with the experimental K and those calculated by the
standard k- method. It means that the difference between K and (k) should be
the calculated part of the fluctuation, that is the quantity in the parentheses of
equation (17). The LES results appear to show higher values of K in the
separated regions, which is predicted largest, but generally of similar order of
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magnitudes with URANS. This indicates that the two-equation turbulence
model used in the unsteady form computes the turbulence associated with the
unsteady motion and is much like a simulation of filtered quantity. It seems
that zero boundary condition for (k) and the near-wall damping of v; suppress
generation of (k). Low (k) combined with the sufficient grid resolution work to
generate small-scale motion that develops to the unsteady turbulent motion.

In order to see how the computed model parameters (k) and (¢) are
associated with the unsteady motion, a sample of instantaneous distribution of
the eddy viscosity v; in the case of isolated hill flow, is shown in Figure 9,
together with the results obtained by the standard k- method and the
Smagorinsky model of LES. It is seen that v, distribution defined by (k) and (¢)
in the URANS resembles that calculated by the standard k- method in most of
the flow away from the shear region downstream of the hill, though the
position of the maximum is shifted somewhat downstream. The values in the
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Figure 6.

Distribution of
calculated total
turbulence kinetic
energy K compared with
experiments for the
isolated hill flow
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Figure 7.

Distribution of
calculated total
turbulence kinetic
energy K compared with
experiments for the
ascending slope flow
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shear region and near the ground, however, are significantly smaller than in the
rest of the region. This is the region where random turbulent motion exists. v;
calculated by LES with the Smagorinsky model, on the other hand, takes
significant values only in this shear region and very small in other parts. What
should be noted is that values of the LES and those of URANS in the shear
dominated turbulent region are about the same. This means that the flows
calculated by both of these methods are similar in this region. In the region
outside the shear region, URANS and the standard %-¢ model and Smagorinsky
model show very different values of v;. The former two show very large values,
indicating effectively lower Reynolds number and more laminar-like flow there,
while Smagorinsky model takes very small values. Whatever the reasons, these
differences in these regions are not as important since there is not much
turbulence there.
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8. Time variation and spectra of fluctuating velocity component

In order to further show what kind of fluctuations we are calculating, the time
variations and the frequency spectra of a fluctuating velocity component at
several positions in the flow are shown in Figures 10 and 11, respectively. The
positions where velocity is sampled are shown in the top sketch of Figure 10.
At the upstream station along the center of the hill, quite regular and fast
oscillations are seen to be generated intermittently near the surface (point As),
while there is only slow unsteadiness outside the boundary layer (point A;). In
the separated wake region, (points B’s at #/H = 2 and C’s at a/H = 4), there are
no small oscillations and the fluctuations are seen to be very random with large
magnitude near the surface. The large-scale fluctuation near the edge of the
wake at point C; is seen to be negatively correlated with those at points near
ground (point Cs) indicating an existence of a large vortex. At further
downstream positions small-scale fluctuations are smoothed out and only
large-scale fluctuations remain. These are all consistent with the properties of
turbulent fluctuations expected in the separated flow woke the present one.

The power spectra of the fluctuating velocity components of Figure 10 are
shown in Figure 11. It is seen that except for the point nearest the surface As,
where a small peak exists corresponding to vortex shedding-like motion there,
the spectra are very smooth. Also, except for points A, and As, the slope is
slightly larger than but close to —3/5 in the range 0.1<nH/U,,<1.0, and steeper
at higher frequencies. The calculation time step is Af = 0.0001H/U, .5, and the
smallest grid spacing is Ay = 0.007H which corresponds to the time increment
of roughly 0.014H/U,,raccording to the Taylor hypothesis with the translation
speed of 0.5U,,. Therefore, the limitation of resolving high-frequency motions
is due to the insufficient grid spacing and the cutoff frequency is about
70U,./H. The grid spacing at the sampling positions is two to ten times larger
than this smallest spacing and the cutoff frequency is two to ten times smaller.
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Figure 8.

Distribution of the
average of the modeled
part (k) of turbulence
kinetic energy calculated
by URANS
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Figure 9.

Sample of instantaneous
eddy viscosity
coefficient v; for isolated
hill flow
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Considering the attenuation due to the insufficient spatial resolution, the
spectra do show properties of filtered turbulent flow.

9. Mean velocity results
Figures 12 and 13 compare the magnitudes of the long-time averaged velocity

Q= \/ (())* + ((z))* of the URANS and LES results and the average

velocity Q = 1/ (u1)* + (uz)” directly calculated by the standard k- method as
the steady-state values are compared with the experimental values

Q =/ (@7)* + (113)>. All of these are supposed to represent the same mean-
velocity magnitude. It should be noted that @ is always positive, even in flow
reversing region. While the standard %-¢ method results appear to be closest to
the experiments in terms of the size of the separated region and the shape of the
contours, URANS results are seen to agree with both of these fairly well,
indicating that the long time mean of the average velocity components (u;)
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Figure 10.

Time variations of
velocity component #; at
ot selected positions
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Figure 11.

Power spectra of
fluctuating velocity
component #; at the
positions shown in
Figure 10
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correspond to the original Reynolds averages. Some waviness in the contours is
seen at the flat surface on top of the hill over the ascending slope, which indicates
that the randomness in the calculated results contains some consistent trend, but
is expected to be due to insufficient computation time and is better than the
separation predicted by the LES. Separate LES calculations were made with
log-law boundary condition at the first calculation point from the ground, which
showed improved mean velocity results but the turbulence was overly damped.
Figure 14 shows comparisons of the mean velocity profiles, including the LES
results with log-law boundary condition, at selected cross-stream sections. These
indicate that calculations that use log-law boundary condition both the standard
k-e and LES calculate the mean velocity profiles better. This is not because the
log-law boundary condition is acceptable even in the separated region, but it is
because the fully developed turbulence is assured if the log-law is used and the
separation point is predicted more accurately. In the present URANS and LES
with near-wall damping, there is no boundary layer tripping mechanism and the
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transition is not properly simulated in the upstream part of the flow. The profiles
calculated by the URANS and LES without log-law at x1/H = -2 indicate that the
boundary layer is still laminar, which appears to be the reason for the early
separation for the hill flow and separation in the case of LES for the slope flow.
Therefore, the reason why the standard k-¢ method does well is mostly due to its
correct prediction of the separation point, and does not undermine the accuracies
of the present URANS.
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Figure 12.
Distribution of
calculated mean total
velocity @ compared
with experiments for the
isolated hill flow
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Figure 13.
Distribution of
calculated mean total
velocity @ compared
with experiments for the
ascending slope flow
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10. Discussion

The URANS and LES governing equations are formally the same. So there is
no reason why one method must always produce a steady or deterministic
periodic flows while the other obtains unsteady chaotic motions. The only
difference lies in the meaning and the modeling of the eddy-viscosity coefficient
if an eddy-viscosity model is used. If a two-equation model is used in the
URANS, the eddy viscosity coefficient is given by the length and velocity
scales inferred from the parameters that are calculated by their transport
equations. On the other hand, if a conventional non-dynamic Smagorinsky
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model is used in LES, it is fixed with the grid scale and the local rate of strain
and it assures smaller stress for higher resolution. The main question now is
what the calculated time-dependent flow represents in which the fluctuation
energy (k) and its rate of dissipation (e) satisfy the assumed unsteady
transport equations and the empirical relations. The present calculations
indicate that its long time average agrees remarkably well with both the steady
conventional RANS results, and the experiments. Furthermore, the
instantaneous results resemble the LES in many respects and though a
theoretical explanation is not possible at the present stage, they appear to
represent some kind of filtered flow field of which filter scale is implicitly built
in the solution and not imposed by such factor as the grid spacing or time step
of the numerical descretization. It means that an artificial ramp function that is
used to bridge a RANS model to DNS depending explicitly on the grid size,
proposed by Speziale (1998), or similar relation contemplated by Baggett (1998)
and Germano (1999) are not necessary. It should be remembered that the grid
size and the filter width are different (Reynolds, 1990). Different orders of
accuracies used in descretization, for example, result in effectively different
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Figure 14.

Velocity profiles along
selected cross stream
sections
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filter widths for the same grid systems. So the filter width implicitly
determined by the solutions of the modeled transport equations may be more
desirable. What is intriguing is that those (k) and (¢) calculated with the same
values of the model constants used in the original steady k- model but with the
proper damping in the low-Reynolds number region, give appropriate levels of
vy for the stress R;; that produces such a random flow. Since the standard k-¢
model, which uses the wall-function boundary condition which sets (k) and (¢)
at the fully-turbulent equilibrium values, did not produce unsteadiness at all,
the near wall modeling is essential, though the present method may not be the
only one. An implication is that the unsteady Reynolds averaged equations of
motion with conventional turbulence closure with low-Reynolds number near-
wall treatment appear to represent some of the real unsteady large-scale motion
of turbulence, though further computations using other models may be
necessary to find out the exact requirements for simulating turbulent motions.
We have tried calculations making the eddy viscosity to explicitly depend on
grid size and the local turbulence length scale (Miyashita & Nakayama, 2001)
in such a way that the eddy viscosity becomes zero when the grid can resolve
the Kolmogorov scale. The results show some improvements.

11. Conclusions

An URANS equation method has been applied to compute the flow over
two-dimensional smooth topography with and without flow separation and
compared with a conventional RANS, LES results and experiments. The
URANS calculation with sufficient grid resolution near ground and an
appropriate near-wall model has been demonstrated to reproduce much of the
large-scale unsteadiness and some of the turbulent motion. Comparisons of the
instantaneous results with conventional LES, and the long-time averages with
the conventional RANS results and experimental results indicate that the
computed flow appears to be some kind of filtered flow. The filter scale is not
explicit but is implied by the obtained results. Without adjusting the model
constants, the overall accuracy of the time-averaged quantities does not
indicate an overwhelming improvement over the standard two-equation model,
due mostly to an insufficient prediction of the position of the transition and
hence the separation points, they exhibit a possible generalization to a new
simulation technique, which may be further refined by using an optimized
model constants and introducing grid-dependent length scales.
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